Статья из блога www.jonathankinlay.com поможет лучше понять работу вашей торговой стратегии и повысить ее производительность в будущем.
Построение прибыльной стратегии только половина успеха, трейдеру еще необходимо понимание так называемой альфы стратегии и риска. Это значит, что нужно определить факторы, обуславливающие прибыльность алгоритма и, в идеале, создать модель так, что их относительный вклад может быть вычислен. Более продвинутый путь — это конструирование мета-модели, которая будет предсказывать прибыльность и давать рекомендации, каким образом должна торговать стратегия в следующий период.
Производительность стратегии
Давайте посмотрим, как это работает на практике. В нашем случае будем использовать следующую внутридневную стратегию на фьючерсах E-mini:
Общая производительность стратегии довольна высока. Среднемесячная прибыль за период с апреля по октябрь 2015 года почти 8 000 долларов на контракт, за вычетом комиссии, со стандартным отклонением всего 5 500 долларов. Годовой коэффициент Шарпа около 5.0. На платформе с хорошим исполнением стратегия может масштабироваться до 10-15 контрактов, с годовой прибылью от 1 до 1.5 миллионов долларов.
Основные этапы создания автоматических торговых систем сформулировал Michael Halls-Moore на своем сайте www.quantstart.com. Я присоединяюсь к его советам и рекомендациям — по текстам на сайте видно, что автор действительно занимается практической работой по алготрейдингу.
Автоматическая торговля это чрезвычайно сложная область биржевых финансов. Значительное время может занять получение необходимых знаний для создания вашей собственной стратегии. Также потребуется неплохие навыки в программировании, как минимум на таких языках, как MATLAB, R или Python. В связи с постоянным ростом частоты сделок технологические аспекты торговли тоже становятся очень важны. Это требует изучения языков программирования C/C++.
Автоматическая торговая система состоит из следующих основных компонентов:
Небольшое исследование стратегии «Гэп на открытии рынка» в блоге Pawel Lachowicz. Автор случайным образом выбрал 10 акций из состава индекса Доу-Джонса, и провел бэктестирование вышеуказанной стратегии. Основные параметры алгоритма:
вход в позицию: если цена открытия актива в день t выше цены закрытия актива в день t-1, и если минимальная цена актива в день t выше максимальной цены актива в день t-1, акция покупается на следующий день, причем цена покупки устанавливается равной цене закрытия дня t;
выход из позиции происходит просто по временному критерию — акция удерживается после входа от 1 до 21 дня, количество дней — это параметр оптимизации для бэктеста.
Сначала бэктест прогоняется на каждом активе отдельно на выборке длительностью 1 год. Пример для акции AXP — сколько в течение этого времени обнаружено условий для входа в позицию (обозначены кружками):